
21.11.2016

iA

zuend@arch.ethz.ch

treyer@arch.ethz.ch

chirkin@arch.ethz.ch

Program your own Agent

Digital Urban Visualization. People as Flows.

iA | 21.11.2016



iA | 21.11.2016

Exercise

program your own agent

Image: www.torobar.com

iA | 21.11.2016





iA | 21.11.2016

Exercise

location choice

The people in the simulation first choose their loca-

tion and then walk to it, choosing the shortest path.

They only re-evaluate their decision with a very low

probability or if they have a need that enters a critical

state.

iA | 21.11.2016



iA | 21.11.2016

Exercise

current agents

In the basic framework, two naive agents are already implemented. RandomPerson and ClosestNeed-

Person.

RandomPerson randomly chooses one of the need

providers and goes to it.

ClosestNeedPerson checks what his most urgent

need is and then chooses the closest location which

provides it.

iA | 21.11.2016



iA | 21.11.2016

Exercise

what to do?

You have to implement the function in which the

agents decide where to go next.

iA | 21.11.2016



iA | 21.11.2016

Exercise

what to do?

You have to implement the function with which the agents decide where to go next.

Delete the content of the function locationChoice and implement your own.

→

This will result in an error, because the function must return a sub-type of type Needs. For example:

iA | 21.11.2016



iA | 21.11.2016

Exercise

what to do?

This will result in an error, because the function must

return a sub-type of type Needs.

Agent

Person

all your agentsClosestNeedPersonRandomPerson

WallNeeds

ToiletStageFoodDrinks

iA | 21.11.2016



iA | 21.11.2016

Exercise

helpers

The function locationChoice has one input, and that

is all the agents which are currently in the system;

wall elements, active people, and all need providers.

The input is called others.

iA | 21.11.2016



iA | 21.11.2016

Exercise

class functions

Since your person inherits from Person it already has some functionalities to work with the input others.

With several get functions, you can get the state of the current agent:

bladderHappiness(), hungerHappiness(),musicHappiness(), and thirstHappiness() give you the current

happiness of the respective need.

getFoodStalls(others), getPersons(others), getDrinkStalls(others), getStages(others), getToilets(others),

getWalls(others), getNeeds(others) extract the respective types from the input list others and return a list

of all existing ones.

iA | 21.11.2016



iA | 21.11.2016

Exercise

class functions

Since your person inherits from Person it already has some functionalities to work with the input others.

With several get functions, you can get the state of the current agent:

minNeed() returns an integer with the smallest happiness of all the needs.

To draw a random number, you can use rGen. For example to draw a random integer between 0 and 3

(inclusive) you can call rGen.nextInt(4).

iA | 21.11.2016



iA | 21.11.2016

Exercise

get locations

The root class of all agents in the system provides some core functionalities,

the most interesting for you is the getPosition() function, which returns the lo-

cation of the corresponding agent.

To get the position of a food stall aFoodStall, for example, you can store its

x-location into currX by calling:

double currX = aFoodStall.getPosition().x();

iA | 21.11.2016



iA | 21.11.2016

Exercise

get number of customers

All need providers count their number of served customers.

To get the number of served customer of a need provider, do the following.

Assume we have again a food stall called aFoodStall.

The number of served customers can then be stored in variable nrCustomers

by calling:

int nrCustomers = aFoodStall.getVisits()

iA | 21.11.2016



iA | 21.11.2016

Exercise

using Eclipse autocompletion

Eclipse provides a huge help in finding out which

functionalities are provided by the different classes.

Start typing and then hit Control (Command with

Macs) and Space. Eclipse provides you then with

all the possible options you have.

This is especially useful when you write down the

variable name plus a point and then hit the short-

cut.

iA | 21.11.2016



iA | 21.11.2016

Exercise

additional information

You can earn 5 points for having a running client

and 5 for creativity of the implementation. We will

run the agents on a few of your suggested layouts

and give points according to the number of agents

of your type after some time.

Latest hand-in date is Tuesday, December 13th, 5

o’clock in the morning.

The winners will be announced at December 19th

and will win a price!

Image: wikipedia.org

iA | 21.11.2016



iA | 21.11.2016

Exercise

update geometry

Download the Geometry.zip from the current lec-

ture post.

Unpack the file and replace the geometryHan-

dler.java file in your project. It is located in the

folder geometry.

iA | 21.11.2016



iA | 21.11.2016

Exercise

setting up your agent

The easiest way to start with your own agent is to copy and paste for example

the RandomPerson.java file into the same package and then rename it.

Right click on RandomPerson.java → click Copy

Eight click on the package calientefestival → click Paste

When the dialogue pops up, put in your name, without whitespaces.

After clicking OK there should be a class with your name in the calientefes-

tival package.

iA | 21.11.2016



iA | 21.11.2016

Exercise

setting up your agent

To make your agent visually distinguishable from other agents, set up a unique

color. This is done by opening your agent and set the RGB values for your

agent in the setColor function.

To add the agent to the whole simulation, one last step has to be taken. You have to register the agent in

the CalienteFestival.java class. Put the name of your class, e.g. ”DaniZuend”, to the classNames list.

→

iA | 21.11.2016


