
28.09.2015

iA

zuend@arch.ethz.ch

treyer@arch.ethz.ch

Programming Basics

Digital Urban Visualization. People as Flows.

iA | 28.09.2015

iA | 28.09.2015

Programming?

Programming is the interaction between the pro-

grammer and the computer. The computer eval-

uates the formal text you write and executes the in-

structions of the text.

iA | 28.09.2015

iA | 28.09.2015

Programming?

Programming means to solve problems and to give

the instructions on how to solve them to the com-

puter.

Sorting: [9,2,8,1,7] → [1,2,7,8,9]

iA | 28.09.2015

iA | 28.09.2015

From Text Files to an Application

simplified explanation

Java is a high-level programming language. This

means, we can write a human readable set of in-

structions. But an interpreter/compiler is needed to

translate the text (a.k.a. code) to a computer read-

able format.

Java source code Java compiler Java byte code

iA | 28.09.2015

iA | 28.09.2015

Object Oriented Programming

In the real world, you’ll often find many individual objects all of the same kind. There may be thousands

of other bicycles in existence, all of the same make and model. Each bicycle was built from the same

set of blueprints and therefore contains the same components. In object-oriented terms, we say that

your bicycle is an instance of the class of objects known as bicycles. A class is the blueprint from which

individual objects are created.

Example by: docs.oracle.com

iA | 28.09.2015

iA | 28.09.2015

Where it all Begins

the main function

The compiler needs to know, where to begin a pro-

gram. This is defined by a function called main, i.e.

public static void main(String[] args) { …}

Last weekwe added this function automatically when

we created the HelloWorld program.

The compiler knows the main keyword and will start

from there.

iA | 28.09.2015

iA | 28.09.2015

Values and Primitive Data Types

Values are for example: 3.1415, 23, or Hello World!.

Each value has a type and we can use variables of specific primitive data types to store values. The three

main data types we will be using are:

– int: int (or integers) are whole numbers.

– double: doubles are real numbers.

– char: is any character. We will normally use a more advanced data structure called string which can

be understood as a list of characters.

– boolean: has a value of either true or false.

iA | 28.09.2015

iA | 28.09.2015

Values and Data Types

assign values to variables

A variable is a name that refers to a value. In Java, you first

have to define the variable and its type. When you use an assign-

ment statement (=), Java will set the variable to the correspond-

ing value. This accounts for any type (primitive data types and

instances of classes).

int a;

a = 23;

System.out.println(a);

double b;

b = 3.1415;

System.out.println(b);

boolean c;

c = true;

System.out.println(c);

char d;

d = ’a’;

System.out.println(d);

string e;

e = ”Hello World!”;

System.out.println(e);

iA | 28.09.2015

iA | 28.09.2015

Operators

Operators represent a computation you want

to do with values or variables. For example the

operators “+, *, -, /” perform addition, multipli-

cation, subtraction and division, respectively.

It is important to ensure that the data type is

correct when you use such an operation.

double a, b, c;

a = 1;

b = 2;

c = a / b;

System.out.println(c);

int a, b, c;

a = 1;

b = 2;

c = a / b;

System.out.println(c);

Output: ? Output: ?

iA | 28.09.2015

iA | 28.09.2015

Operators

Operators represent a computation you want

to do with values or variables. For example the

operators “+, *, -, /” perform addition, multipli-

cation, subtraction and division, respectively.

It is important to ensure that the data type is

correct when you use such an operation.

double a, b, c;

a = 1;

b = 2;

c = a / b;

System.out.println(c);

int a, b, c;

a = 1;

b = 2;

c = a / b;

System.out.println(c);

Output: 0.5 Output: ?

iA | 28.09.2015

iA | 28.09.2015

Operators

Operators represent a computation you want

to do with values or variables. For example the

operators “+, *, -, /” perform addition, multipli-

cation, subtraction and division, respectively.

It is important to ensure that the data type is

correct when you use such an operation.

double a, b, c;

a = 1;

b = 2;

c = a / b;

System.out.println(c);

int a, b, c;

a = 1;

b = 2;

c = a / b;

System.out.println(c);

Output: 0.5 Output: 0

iA | 28.09.2015

iA | 28.09.2015

Lists

There exist many types of lists in Java. We will use the ArrayList. To work with a list, first initialize a variable

of the ArrayList type.

ArrayList<double> myList;

The list can only contain one type of object/data types, thus we have to define it at initialisation, e.g.

double above. To add elements, we use the add function of ArrayLists.

myList.add(2.3);

This appends 2.3 to the end of the list.

iA | 28.09.2015

iA | 28.09.2015

Lists

To add elements, we use the add function of ArrayLists.

myList.add(2.3);

This appends 2.3 to the end of the list. To access an element in the list, we use the get functionality.

double a;

a = myList.get(0);

a has stored the value 2.3 now. Be aware that counting normally starts at zero in programming, thus the

first element in the list has the index 0.

iA | 28.09.2015

iA | 28.09.2015

Lists

To access an element in the list, we use the get functionality.

double a;

a = myList.get(0);

a has stored the value 2.3 now. Be aware that counting normally starts at zero in programming, thus the

first element in the list has the index 0. It is also possible to delete elements for this, ArrayList has the

remove functionality.

myList.remove(0);

Now the list is empty again. There are many other functionalities for ArrayList, check the internet, e.g. [1].

[1]: docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

iA | 28.09.2015

iA | 28.09.2015

Boolean Expressions

Boolean expressions are either true or false. The result is of type Boolean. They are most often used to

check for conditions in conditional statements. Most of the time, relational operators are used.

Relational operators: == , !=, <, >, <=, >=

They stand for: equal, not equal, smaller, greater, smaller-equal, greater-equal.

Do not confuse = with == , the first is the assignment operator, the other one the relational operator!

iA | 28.09.2015

iA | 28.09.2015

Logical Operators

Logical operators are or (||), and (&&) and not (!). They are used to construct logical expressions. The

following examples make the concept very understandable, if you read them with an is at the beginning

and formulate them as a question.

x < 2 && x >= 0

x == 0 || x != 0

!(x == 0 || x > 100)

iA | 28.09.2015

iA | 28.09.2015

Logical Operators

Logical operators are or (||), and (&&) and not (!). They are used to construct logical expressions. The

following examples make the concept very understandable, if you read them with an is at the beginning

and formulate them as a question.

x < 2 && x >= 0

x == 0 || x != 0

!(x == 0 || x > 100)

true if x between 0 and 2, excluding 2.

always true

true if x is smaller then 0 or if it is between 0 and

100, excluding 0.

iA | 28.09.2015

iA | 28.09.2015

Conditional Statements

Conditional Statements are an important construct in programming, since we always need to check

some condition and let the program changing its behavior accordingly.

Check Condition

Behavior II

Behavior I

iA | 28.09.2015

iA | 28.09.2015

Conditional Statements

The simplest form of a conditional statement is the if statement. It checks if some condition is fulfilled

and executes the code if it is true.

if (aValue < 2) {

System.out.println(”Hello World!”);

}

iA | 28.09.2015

iA | 28.09.2015

Conditional Statements

When you want the program to execute an alternative, if a condition is not met you can add the else

statement.

if (aValue < 2) {

System.out.println(”Hello World!”);

} else {

System.out.println(”Goodbye World!”);

}

iA | 28.09.2015

iA | 28.09.2015

Conditional Statements

It is also possible to chain conditional statements using the else if statement.

if (aValue < 2) {

System.out.println(”Hello World!”);

} else if (aValue > 99) {

System.out.println(”Wow!”);

} else {

System.out.println(”Goodbye World!”);

}

iA | 28.09.2015

iA | 28.09.2015

Loops

The second important construct in programming is

loops. This makes it possible to repeat a statement

multiple times.

There are two different kinds of loops, for loops and

while loops.

iA | 28.09.2015

iA | 28.09.2015

while Loop

A while loop executes the corresponding sequence of instructions until some condition is not fulfilled

anymore.

int a = 1;

while (a < 16) {

a = a + a;

System.out.println(a);

}

2

4

8

16

iA | 28.09.2015

iA | 28.09.2015

for Loop

A for loop allows you to repeat a task a specific

number of times.

for(initialization; condition; update) {

statements

}

Image source: www.tutorialspoint.com

iA | 28.09.2015

iA | 28.09.2015

for Loop

for (int x = 0; x < 5; x = x + 1) {

System.out.println(x);

}

Image source: www.tutorialspoint.com

iA | 28.09.2015

iA | 28.09.2015

for Loop

for (int x = 0; x < 5; x = x + 1) {

System.out.println(x);

}

0

1

2

3

4

Image source: www.tutorialspoint.com

iA | 28.09.2015

iA | 28.09.2015

What is the difference?

for (int x = 0; x < 4; x = x + 1) {

System.out.println(x);

}

int x = 0;

while (x < 4) {

x = x + 1;

System.out.println(x);

}

iA | 28.09.2015

iA | 28.09.2015

What is the difference?

for (int x = 0; x < 4; x = x + 1) {

System.out.println(x);

}

int x = 0;

while (x < 4) {

x = x + 1;

System.out.println(x);

}

0

1

2

3

iA | 28.09.2015

iA | 28.09.2015

What is the difference?

for (int x = 0; x < 4; x = x + 1) {

System.out.println(x);

}

int x = 0;

while (x < 4) {

x = x + 1;

System.out.println(x);

}

0

1

2

3

1

2

3

4

iA | 28.09.2015

iA | 28.09.2015

Loop Keywords

Very useful keywords when working with loops are break and continue.

– break terminates the loop and resumes after the loop construct.

– continue terminates the current iteration and returns to the beginning of the loop.

iA | 28.09.2015

f o r (i n t a = 0; a < 10; a = a + 1) {

i f (a < 3) {

System . out . p r i n t l n (a * 100) ;

} e lse i f (a == 5) {

cont inue ;

} e lse i f (a > 7) {

break ;

} e lse {

System . out . p r i n t l n (a) ;

}

}

iA | 28.09.2015iA | 28.09.2015

f o r (i n t a = 0; a < 10; a = a + 1) {

i f (a < 3) {

System . out . p r i n t l n (a * 100) ;

} e lse i f (a == 5) {

cont inue ;

} e lse i f (a > 7) {

break ;

} e lse {

System . out . p r i n t l n (a) ;

}

}

iA | 28.09.2015

0

100

200

3

4

6

7

iA | 28.09.2015

iA | 28.09.2015

Exercise I

In the first exercise, you will need to use conditional statements as well as loops.

Please send the code you programmed to Dani (zuend@arch.ethz.ch) by next Sunday.

This means to send the .java file located in “yourWorkspace → yourProjectName → src” with all the

code to Dani. You can check if it the right file with every text editor.

Put all your code in the main method, the same location we put the System.out.println(”Hello World!”);

last week.

iA | 28.09.2015

iA | 28.09.2015

Exercise I

information

###

00

#

It is not allowed to hardcode the solutions, you should

print only one character per time and use loops and

conditional statements!

The modulo operator (%) can be very useful for this

exercise. It calculates the remainder of a division.

This can be used, e.g., to find out very fast if a num-

ber is odd or even.

For example 7%4 == 3; 8%2 == 0; 8%3 == 2

iA | 28.09.2015

pub l ic s t a t i c void main (S t r i n g [] args) {

f o r (i n t i = 3 ; i >= 0; i = i −1) {

char symbol ;

i f (i%2 == 1) {

symbol = ’# ’ ;

} e lse {

symbol = ’0 ’ ;

}

f o r (i n t j = 0 ; j < i ; j = j + 1) {

System . out . p r i n t (symbol) ;

}

System . out . p r i n t l n () ;

}

}

iA | 28.09.2015

###

00

#

iA | 28.09.2015

iA | 28.09.2015

Editor

errors and warnings

The editor helps to find errors in your code. To find

out what it is, hover with the mouse over the er-

ror symbol and it will give you a hint what could be

wrong.

The same accounts for warnings, with the yellow

symbol.

iA | 28.09.2015

iA | 28.09.2015

Other Helpers

debugging & resources

The most important helpers for larger projects are two, the internet and the debugging mode.

When looking for something specific for Java programming, search in your favourite search engine, be-

ginning with Java and then your question.

When you cannot figure out what is wrong with your code, check the Internet for Eclipse Java Debugging

to find for example this tutorial:

http://www.vogella.com/tutorials/EclipseDebugging/article.html

iA | 28.09.2015

