Elective Course Information Architecture

Responsive Environments

Prof Dr Gerhard Schmitt
November 10, 2008
Responsive Environments

Overview

- Ubiquitous Computing
- Technologies pervading Space - Examples
- Quality Characteristica
- The changing Relationship with the Environment
- Diplomwahlfach
- Notice L7/L8
Responsive Environments

Overview

- Ubiquitous Computing
- Technologies are pervading Space - Examples
- Quality Characteristics
- The changing Relationships to the Environment
- Diplomwahlenfach
- Notice L7/L8
This paradigm is also described as pervasive computing, ambient intelligence, or more recently, everyware.

When primarily concentrating on the objects involved, it is also physical computing, the Internet of things, haptic computing, and things that think.
The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.

Marc Weiser, 1991
Ubiquitous Computing

Definitions and Principles

Ubiquitous Computing is...

- numerous, casually accessible, often invisible computing devices
- frequently mobile or imbedded in the environment
- connected to an increasingly ubiquitous network structure
Ubiquitous Computing

Development Stages

Mainframe-Era:
one computer, many users

PC-Era:
one computer, one user

Ubiquitous Computing:
many computers, one user
Ubiquitous Computing

Ubiquitous Connectivity

Mainframe-Era: beginning connections

PC-Era: Internet

Ubiquitous-Computing: Web of objects
Overview

- Ubiquitous Computing
- Technologies are pervading Space - Examples
- Quality Characteristics
- The changing Relationships to the Environment
- Diplomwahlfach
- Notice L7/L8
PROJECT 3005
1. Prize

Mitlinks AG
Alexandra Papadopoulos
Urs Suter
Rafael Garcia
L’Altro
Cyril Brunner
Jakob Schiratzki
HLS Architekten
Matthias Hauenstein
ETH Zürich, D-ELEK
Daniel Erni

Facts:
29.04.2000
Competition Started
300 parties, 30 countries
phase 1
51 contributions submitted
07.2000
phase 2
7 contributions selected
08.11.2000
Jury decision
13.11.2000
Public Presentation of the Winner

Organization:
ETH Zürich
[Phase 1] Berlin

Invitation to tender:
.pdf, .text (0.4 MB)
.pdf low res. (1.5 MB)
.pdf high res. (9.0 MB)

Map Legend:
1. Prize
2. Prize
3. Prize
4. Prize
Separate Prize
3. Rundgang (2.Ph) 9
3. Rundgang (1.Ph) 1
2. Rundgang (1.Ph) 24
1. Rundgang (1.Ph) 17
Nachrücker 1
ETH World

 ETH World
 ETH Learning, Teaching, Research, Service World
 ETH Student World
 ETH Assistant World
 ETH Professor World
 ETH Department Head World
 ETH Administration World
 ETH Alumni World
ETH World

Reasons for ETH World:
Development of data traffic

Source:
SWITCH 2001 http://www.switch.ch
Wearable Technology in ETHWorld

http://www.ethworld.ch
"the use of electronic means to facilitate the execution and coordination of tasks"

Examples in ETHWorld

Tasks: attending lectures, access documents, access spaces, etc.

Coordination of tasks: group discussions, research collaboration, etc.
All Digital: Advanced use of IT at any stage implies that all tasks in all linked stages are executed in
They are central to ETHWorld
Access beyond the desktop
ETH World

ETHWorld structure

Identity of the user (wearable computing)
Interface (glue that puts everything together)
Large databases about ETH and the World (administration & content)
Swatch watches (Swisshouse)
Swissair e>card
Swisshouse: registration of visitors using Swatch watches
From big to small...

- Wireless laptop
- PDA
- Smart card
- Watch
- Pin
- Textiles
- etc
Levels of Input

Human: active interfaces (keyboard, stylus, voice, etc.)
Sensors: passive interfaces (temperature, time, external signals, etc.)
Constant signal, preprogrammed
Challenges...

- Miniaturization
- Functionality
- Design
- Security
 - Stolen identity
 - Access to databases
ETH World presence

a wearable device?

Each member of the ETH community will have the opportunity to receive a mobile device: *The ETHworld presence*

ETHworld presence will be a tool to access ETHworld and its global community. It will contain a personal Web server and will allow direct interaction with ETHworld's physical facilities.

A built-in radio interface like Bluetooth and UMTS will allow communication with ETHworld, all existing equipment (laptop, workstation, cellular telephone, or PDA), and the ETHworld accessories. Connected with the accessories, the ETHworld presence will become a complete mobile communication and collaboration device.
Not everything will be miniaturized

Digital displays and interaction spaces will become part of the physical architecture

The middle will disappear
ETH World

Goals and Milestones in 2000

International competition for the design of ETH World infrastructure

Begin of phase 1 ETH World pioneer projects

Planning of prototype wireless learning and working environment
The
Projects in
2001

ETH World

Neptun

Wireless LAN

Infostructure projects II: Focussed on the direct needs of ETH World as result of the competition

Implementation of competition results I
Infostructure projects III: Focussed on the direct needs of ETH World
Implementation of competition results
Neptun II: Portables for all
ETH World GRID: Research support
If at all possible, the costs for the coming three years should not be deducted from the core Research and Teaching budget of ETH Zürich, but from:

- Gains from deregulation in electricity supply
- Gains from deregulation in communication supply
- Building construction budget
Probable consequences

Re-definition of the status and need for research facilities
Re-definition of the status and need for teaching facilities
Changes in the role of the computing services
The university of the future will consist of a physical part and a rapidly growing virtual part. Together, they will form the new reality.
Future infrastructure planning must consider the virtual part of the university as an integral part from the beginning
Probable consequences:

– Development of a new type of communication
– Long-term gains
– Short-term costs
Conclusions - 4

Regionalism will grow

The importance of physical architecture and physical presence will increase as a result of de-materialization and virtualization.

The human being will increasingly be the focus of the development.
ETH World's main goal: Make ETH the most attractive – physical and virtual - place to study and do research
www.ethworld.ch
Technologies are pervading Space

Example: ICE, Tokyo Station

Ice, Installation Tokyo Station, Bloomberg Headquarters, 2002
Technologies are pervading Space

Example: ICE, Tokyo Station
Technologies are pervading Space

Example: SPOTS, Berlin

Guest lecturer Prof Tim Edler, Realities:United, November 11, 2008
Technologies are pervading Space

Example: SPOTS, Berlin

Guest lecturer Prof Tim Edler, Realities: United, November 11, 2008

SPOTS, Berlin, Germany, 2005, Realities Uniteded*
Technologies are pervading Space

Example: Colour by Numbers, Stockholm

Colour by Numbers, Stockholm, Sweden, 2006 Erik Krikortz, Milo Lavén and Loove Broms
Technologies are pervading Space

Example: Colour by Numbers, Stockholm

Colour by Numbers, Stockholm, Sweden, 2006 Erik Krikortz, Milo Lavén and Loove Broms
Technologies are pervading Space

Example: under scan, Nottingham, UK

under scan, Relational Architecture, Nottingham, UK, 2006, Rafael Lozano-Hemmer
Technologies are pervading Space

Example: under scan, Nottingham, UK
Overview

- Ubiquitous Computing
- Technologies are pervading Space - Examples
- Quality Characteristics
- The changing Relationships to the Environment
- Diplomwahlfach
- Notice L7/L8
We identify five goals of ubiquity, with regards to a service. These goals may be satisfied to varying degrees based on user needs and operating conditions.

- Availability
- Transparency
- Seamlessness
- Awareness
- Trustworthiness
Ideally, a ubiquitous service should be available context independent.

The service should be also available regardless of changes in user status, needs, and preferences.
Quality Characteristics

Transparency

A good tool is an invisible tool, meaning that the tool does not intrude on the user consciousness.

The user focuses on the task (not the tool) so that she or he can achieve more intuitively and with ease without requiring constant attention and awareness of the underlying technology.
The capability of providing an uninterrupted service session under any connection with any device.

The system will recognize the user wherever she or he logs on, on any system, with any equipment, at any time, with the applications in a given state and have them adapt in the best possible way given these surrounding conditions.
Ubiquitous devices extend the human senses by providing greater awareness of the surrounding environment.

By blending into the physical world, ubiquitous computing bridges the gap between the end-user and her or his surrounding.
Quality Characteristics

Trustworthiness

Mutual trust must be established between different entities in a ubiquitous environment in a sense that each entity is assigned a trust value based on its behavior.

An entity can be a device, a service or a user.
Responsive Environments

Overview

- Ubiquitous Computing
- Technologies are pervading Space - Examples
- Quality Characteristics
- The changing Relationships with the Environment
- Diplomwahlfach
- Notice L7/L8
The changing Relationships to the Environment

From GUI to smart Space

<table>
<thead>
<tr>
<th></th>
<th>Virtual</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreground</td>
<td>Graphical User Interface (GUI)</td>
<td>Haptic Interface</td>
</tr>
<tr>
<td>Background</td>
<td>Ambient Interface</td>
<td>Inhabitable Interface (smart space)</td>
</tr>
</tbody>
</table>
The changing Relationships to the Environment

Price Trends of Memory in US-Dollar/MByte

Source: Elgar Fleisch, Friedemann Mattern (Hrsg.), Das Internet der Dinge, Springer Verlag, 2005
The changing Relationships to the Environment

Why should we look at UbiComp?

There is a paradigm shift from cyberspace to pervasive or ubiquitous computing.

Digital technology moves out of the screen into our daily life under the laws of physics.
The changing Relationships to the Environment

Why we should look at UbiComp

Statement 1/5

Many developments in information and communication technology originally invented for industries have later become part of our daily lives - and will continue to do so.
The changing Relationships to the Environment

Why we should look at UbiComp

Statement 2/5

Many everyday objects become 'smart' by adding information technology to collect, save, use and exchange data.
Statement 3/5

Locating objects becomes continually easier, cheaper and more precise.

This trend leads to ethical and legal discussions.
The changing Relationships to the Environment

Why we should look at UbiComp

Statement 4/5

Smart everyday objects, ‘Ambient Intelligence‘ and an ‘Internet of Things‘ enable additional benefits.
Collecting everyday life data results in huge challenges - for technology, economy and society.
The changing Relationships to the Environment

Why we should look at UbiComp?

Ubiquitous Computing is already here!
Responsive Environments

Overview

- Ubiquitous Computing
- Technologies are pervading Space - Examples
- Quality Characteristics
- The changing Relationships to the Environment
- Diplomwahlfach
- Notice L7/L8
Are you interested in writing a Diplomwahlfacharbeit in an Information Architecture relevant topic?

Your contact
Sandra Wipfli
wipfli@arch.ethz.ch
Overview

- Ubiquitous Computing
- Technologies are pervading Space - Examples
- Quality Characteristics
- The changing Relationships to the Environment
- Diplomwahlfach
- Notice L7/L8
Notice

Building HPT
Room C103

L8 / 17.11.2008
The Digital Ornament
Dr Kai Strehlke

L9 / 24.11.2008
Interactive Architecture
Prof Tim Edler, Berlin
Podcast Information Architecture

http://www.ia.arch.ethz.ch/teaching/teaching-08/
Responsive Environments

Sources

05: http://nist.gov/pc2001
10: AD, 4Dspace, Interactive Architecture, wiley.com
11: http://www.youtube.com/watch?v=4IbAQ1K8X94
12: http://www.spots-berlin.de/de/galerie/impressionen.php?col=0&expo=104
13: http://www.youtube.com/watch?v=047K74NU0Q
14: http://www.colourbynumbers.org/
15: http://www.youtube.com/watch?v=_nIpyou31vg
16: http://www.lozano-hemmer.com/imaglrh/rpics/uscan/1_girl_05_seq1.tiff
17: http://www.youtube.com/watch?v=GQxLcxQA0Y
28: http://www.ubicomp.org/ubicomp2006/11.jpg
29-34: unknown source
35: http://www.flickr.com/photos/sveinhal/2676746354/